Relay-Version: version B 2.10 5/3/83; site utzoo.UUCP Path: utzoo!mnetor!uunet!seismo!rutgers!labrea!kestrel!ladkin From: ladkin@kestrel.ARPA (Peter Ladkin) Newsgroups: sci.math,sci.math.symbolic,sci.philosophy.tech Subject: Re: Russell's paradox Message-ID: <25324@kestrel.ARPA> Date: Mon, 27-Jul-87 19:23:35 EDT Article-I.D.: kestrel.25324 Posted: Mon Jul 27 19:23:35 1987 Date-Received: Tue, 28-Jul-87 07:24:24 EDT References: <1214@utx1.UUCP> <853@daimi.UUCP> Organization: Kestrel Institute, Palo Alto, CA Lines: 13 Keywords: reference Xref: mnetor sci.math:1668 sci.math.symbolic:109 sci.philosophy.tech:310 In article <853@daimi.UUCP>, jnp@daimi.UUCP (J|rgen N|rgaard) writes: > Zermelo Fraenkels axioms for sets (should) prevent(s) sets to be defined > that way. A reference might be North Hollands Handbook of ... mathematics > (I think it is called). Handbook of Mathematical Logic, edited by Barwise, published by North-Holland. An excellent reference for logic in general. Another one for Set Theory in particular is Fraenkel/Bar-Hillel/Levy's Foundations of Set Theory (a new edition is in print, and so the author list might have changed for this). peter ladkin ladkin@kestrel.arpa