Relay-Version: version B 2.10 5/3/83; site utzoo.UUCP
Path: utzoo!mnetor!uunet!seismo!rutgers!labrea!kestrel!ladkin
From: ladkin@kestrel.ARPA (Peter Ladkin)
Newsgroups: sci.math,sci.math.symbolic,sci.philosophy.tech
Subject: Re: Russell's paradox
Message-ID: <25324@kestrel.ARPA>
Date: Mon, 27-Jul-87 19:23:35 EDT
Article-I.D.: kestrel.25324
Posted: Mon Jul 27 19:23:35 1987
Date-Received: Tue, 28-Jul-87 07:24:24 EDT
References: <1214@utx1.UUCP> <853@daimi.UUCP>
Organization: Kestrel Institute, Palo Alto, CA
Lines: 13
Keywords: reference
Xref: mnetor sci.math:1668 sci.math.symbolic:109 sci.philosophy.tech:310

In article <853@daimi.UUCP>, jnp@daimi.UUCP (J|rgen N|rgaard) writes:
> Zermelo Fraenkels axioms for sets (should) prevent(s) sets to be defined
> that way. A reference might be North Hollands Handbook of ... mathematics 
> (I think it is called).

Handbook of Mathematical Logic, edited by Barwise, published by
North-Holland. An excellent reference for logic in general.
Another one for Set Theory in particular is Fraenkel/Bar-Hillel/Levy's
Foundations of Set Theory (a new edition is in print, and so the
author list might have changed for this).

peter ladkin
ladkin@kestrel.arpa