Relay-Version: version B 2.10 5/3/83; site utzoo.UUCP Posting-Version: version B 2.10.2 9/18/84 / QGSI 2.0; site qubix.UUCP Path: utzoo!watmath!clyde!cbosgd!ihnp4!qantel!dual!vecpyr!lll-lcc!lll-crg!ucdavis!ucbvax!decvax!decwrl!sun!idi!qubix!jeff From: jeff@qubix.UUCP (Jeff Bulf) Newsgroups: net.graphics,net.wanted.sources Subject: Re: Re: fast sphere algorithms Message-ID: <1651@qubix.UUCP> Date: Wed, 6-Nov-85 12:55:19 EST Article-I.D.: qubix.1651 Posted: Wed Nov 6 12:55:19 1985 Date-Received: Mon, 11-Nov-85 05:23:14 EST References: <1490@uwmacc.UUCP> <629@osu-eddie.UUCP> <491@sbcs.UUCP> <2503@mnetor.UUCP> Organization: Qubix Graphic Systems, San Jose, CA Lines: 17 Xref: watmath net.graphics:1254 net.wanted.sources:1498 > >A reasonable way of generating spherical surfaces by purely integer means > >is, of course, to run two bresenham's circle algorithms in tandem (or has > >someone already mentioned this). > > > Could somebody post Bresenham's algorithm or provide a journal reference? 1. A Linear Algorithm for Incremental Digital Display of Circular Arcs Jack Bresenham, CACM Feb 1977 Volume 20 Number 2. [this is the horse's mouth, but hard to read] 2. Foley & vanDam contains the most readable presentation I have found. Look under "scan conversion - circles" in the index. Hope this helps. -- Dr Memory ...{amd,ihnp4}!qubix!jeff