Relay-Version: version B 2.10 5/3/83; site utzoo.UUCP
Posting-Version: version B 2.10.2 9/18/84 / QGSI 2.0; site qubix.UUCP
Path: utzoo!watmath!clyde!cbosgd!ihnp4!qantel!dual!vecpyr!lll-lcc!lll-crg!ucdavis!ucbvax!decvax!decwrl!sun!idi!qubix!jeff
From: jeff@qubix.UUCP (Jeff Bulf)
Newsgroups: net.graphics,net.wanted.sources
Subject: Re: Re: fast sphere algorithms
Message-ID: <1651@qubix.UUCP>
Date: Wed, 6-Nov-85 12:55:19 EST
Article-I.D.: qubix.1651
Posted: Wed Nov  6 12:55:19 1985
Date-Received: Mon, 11-Nov-85 05:23:14 EST
References: <1490@uwmacc.UUCP> <629@osu-eddie.UUCP> <491@sbcs.UUCP> <2503@mnetor.UUCP>
Organization: Qubix Graphic Systems, San Jose, CA
Lines: 17
Xref: watmath net.graphics:1254 net.wanted.sources:1498

> >A reasonable way of generating spherical surfaces by purely integer means
> >is, of course, to run two bresenham's circle algorithms in tandem (or has
> >someone already mentioned this).
> >
> Could somebody post Bresenham's algorithm or provide a journal reference?

1. A Linear Algorithm for Incremental Digital Display of Circular Arcs
   Jack Bresenham, CACM Feb 1977 Volume 20 Number 2.
   [this is the horse's mouth, but hard to read]

2. Foley & vanDam contains the most readable presentation I have found.
   Look under "scan conversion - circles" in the index.

   Hope this helps.
-- 
	Dr Memory
	...{amd,ihnp4}!qubix!jeff