Relay-Version: version B 2.10 5/3/83; site utzoo.UUCP Posting-Version: Notesfiles; site smu.UUCP Path: utzoo!watmath!clyde!burl!ulysses!mhuxj!ihnp4!inuxc!pur-ee!uiucdcs!smu!leff From: leff@smu.UUCP Newsgroups: net.math.symbolic Subject: Through nfpipe Message-ID: <35800004@smu.UUCP> Date: Mon, 17-Sep-84 17:48:00 EDT Article-I.D.: smu.35800004 Posted: Mon Sep 17 17:48:00 1984 Date-Received: Tue, 25-Sep-84 05:49:35 EDT Lines: 131 Nf-ID: #N:smu:35800004:000:5660 Nf-From: smu!leff Sep 17 16:48:00 1984 Table of Contents for SYSMAC 81 1981 ACM Symposium on Symbolic and Algebraic Computation Session 1. System Design The basis of a computer system for modern algebra ......................... 1 J. Cannon A language for computational algebra ...................................... 6 R. D. Jenks B. M. Trager Characterization of VAX Macsyma ........................................... 14 J. K. Foderaro R. J. Fateman SMP - A Symbolic Manipulation Program ..................................... 20 C. A. Cole and S Wolfram Session 2. Ordinary Differential Equations An extension of Liouville's theorem on integration in finite terms ........ 23 M. F. Singer B. D. Saunders B. F. Caviness Formal solutions of differential equations in the neighborhood of singular points .................................................................. 25 J. Della Dora E. Tournier Elementary first integrals of differential equations ...................... 30 M. J. Prelle M. F. Singer A technique for solving ordinary differential equations using Riemans' P-functions .................................................... 36 S. Watanabe Using Lie transformation groups to find closed form solutions to first order ordinary differntial equations ................. 44 B. Char Session 3. Applied Algebraic Computation The computational complexity of continued fractions (Invited Paper) ....... 51 V. Strassen Newton's iteration and the sparse Hensel algorithm ........................ 68 R. Zippel Session 4. Applied Algebraic Computatin (cont.) Automatic generation of finite difference equations and Fourier stability analyses ................................................................ 73 M. C. Wirth The automatic derivation of periodic solutions to a class of weakly nonlinear differential equations ........................................239 J. P. Fitch A. C. Norman M. A. Moore An algorithmic classification of geometries in general relativity ......... 79 J. Aman A. Karlhede Formulation of design rules for NMR imaging coil by using symbolic manipulation ............................................................ 85 J. F. Schenck M. A. Hussain Computation for conductatnce distributions of percolation lattice cells ... 94 R. Fogelholm Session 5. Algorithm IMplementations Breur's grow factor algorithm in computer algebra .........................100 J. A. van Hulzen User-based integration software ...........................................245 J. P. Fitch An implementation of Kovacic's algorithm for solving second order linear homogenous differential equations .......................................105 B. D. Saunders Implementing a polynomial factorization and GCD package ...................109 P. M. A. Moore A. C. Norman Session 6. Performance Issues Note on probabilistic algorithms in integer and polynomial arithmetic .....117 M. Kaminski A case study in interlanguage communication: fast LISP polynomial operations written in 'C' ...............................................122 R. J. Fateman On the application of array processors to symbol manipulation .............126 R. Beardsworth The optimization of user programs for an algebraic manipulation system ....131 P. D. Pearce R. J. Hicks Views on transportability of LISP and LISP-based systems ..................137 R. J. Fateman Session 7. Linear Algebra Algorithms Algebraic constructions for algorithms (Invited Paper) ....................142 S. Winograd A cancellation free algorithm, with factoring capabilities, for the efficient solution of large sparse sets of equations ....................146 J. Smit Efficient Gaussian eliminatin method for symbolic determinants and linear systems..................................................................155 T. Sasaki and H. Murao Parallelism in algebraic computation and parallel algorithms for symbolic linear systems...........................................................160 T. Sasaki Y. Kanada Symposium Banquet Banquet Address: Algebraic Computation for the masses Joel Moses, MIT, USA.......................................................168 Session 8. Groups, Rings and Algebras Construction of nilpotent Lie algebras over arbitrary fields...............169 R. E. Beck B. Kolman Algorithms for central extensions of Lie algebras..........................175 R. E. Beck B. Kolman Computing and invariant subring of k[x,y]..................................179 R. Neumann Double cosets and searching small groups...................................182 G. Butler Session 9 Polynomials and Rational Functions A generalized class of polynomials that are hard to factor.................188 E. Kaltofen D. R. Musser B. D. Saunders Some inequalities about univariant polynomials.............................195 M. Mignotte Factorization over finitely generated fields...............................200 J. H. Davenport B. M. Trager On solving systems of algebraic equations via ideal bases and elimination theory...................................................................206 M. Pohst D. Y. Y Yun A p-adic algorithm for univariate partial fractions........................212 P. Wang Section 10. Semi-Symbolic Computation Use of VLSI in algebraic computation: some suggestions.....................218 H. T. Kung An Algebraic front-end for the production and use of numeric programs......223 D. H. Lanam Computer Algebra and numerical integration.................................228 R. J. Fateman Tracing occurrences of patterns in symbolic computations...................233 F. Gardin J. A. Campbell Author Index...............................................................249